
# [THE STANDARD IN SILICA-BASED HPLC COLUMN PERFORMANCE ]







"The SunFire columns were selected for their resolving power and reliability to meet both our analytical and preparative needs. SunFire columns allowed us to load up to 50% more sample, with similar results, and run up to twice as many injections than we had done previously."

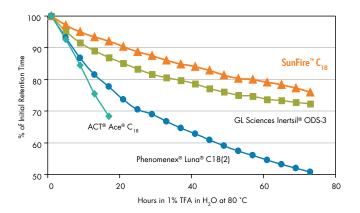
#### **Anthony Paiva**

Senior Research Scientist PhytoCeutica, Inc.

"Being able to load more compound per injection is valuable for saving time without sacrificing purity. Mass recoveries using the OBD Prep Columns are excellent and are higher than other columns I have used. Even after 1,000+ injections, the columns are still performing as they did fresh out of the box."

Michael J. Mayer, Ph.D. Senior Research Scientist II Discovery Services - Medicinal Chemistry AMRI (Contract Laboratory)






## SUNFIRE C18 AND C8 ANALYTICAL COLUMNS

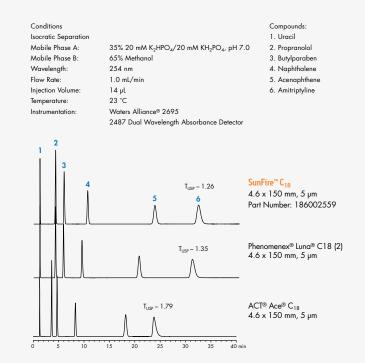
SunFire<sup>m</sup> columns set the standard for the state-of-the-art bonded C<sub>18</sub> and C<sub>8</sub> silica HPLC columns. Benefiting from years of research and product development, SunFire columns represent the best in particle and bonding expertise and deliver the industry-leading level of chromatographic performance.

#### **EXCELLENT LOW pH STABILITY**

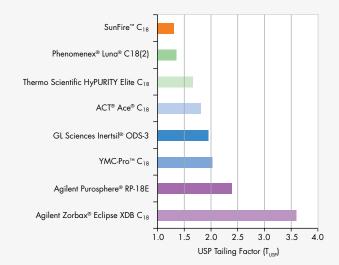
Column lifetime is improved by low pH stability superior to that of many silica-based HPLC column brands.



#### HIGH EFFICIENCY


A combination of proprietary, state-of-the-art silica synthesis, bonding, end-capping, and packing technologies produce SunFire columns with high efficiency. One important benefit of these efforts is greater sensitivity.

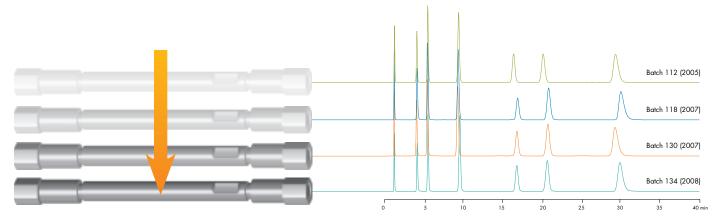
#### **MS-COMPATIBILITY**


SunFire columns are compatible with mass spectrometry applications, providing sharp peaks, excellent sensitivity, high peak capacity, and ultra-low bleed. In addition, the speed, excellent resolution, and low backpressure offered by SunFire Intelligent Speed ( $IS^{**}$ ) columns reduce costs and analysis times.

#### SUPERIOR PEAK SHAPE

With new bonding and new end-capping technologies for the SunFire columns, Waters has developed a sorbent with superior peak shape performance. SunFire columns provide symmetrical peaks for improved resolution and quantitation of acidic, neutral, and basic compounds at low and intermediate pH ranges.




#### Comparison of C<sub>18</sub> 5 µm HPLC Columns



In this comparison test of columns packed with 5  $\mu$ m particles, SunFire C<sub>18</sub> column has the lowest USP tailing factor for the basic probe amitriptyline under the most demanding pH 7 mobile-phase conditions.

#### **BATCH-TO-BATCH REPRODUCIBILITY**

In establishing new analytical methods for the latest pharmaceutical and biopharmaceutical products, the selection of a reproducible HPLC column is essential. The selected column needs to provide the same chromatographic results over the life of the method and the new drug product. SunFire columns have demonstrated superior reproducibility over many years. Batches randomly selected over the past 4 years show excellent reproducibility in the example below.



This excellent reproducibility is a result of our commitment to maintaining the tightest specifications in the HPLC column industry. SunFire columns start with high purity raw materials, and are produced using tightly controlled manufacturing processes and column packing procedures that provide today's scientists with the best, most reproducible HPLC columns available.

Condi

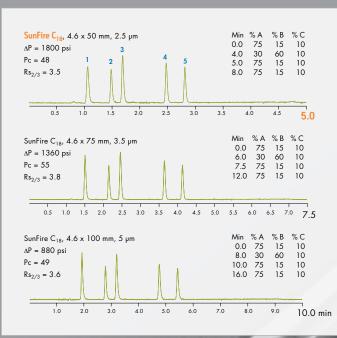
Colum

Mobile Mobile Mobile

Flow R

Sampl

Injectio


Colum

Detecti

Sampl Instrun

#### SUNFIRE 2.5 µm COLUMNS

This smaller particle size allows chromatographers to gain improved sensitivity and greater efficiency. SunFire columns with 2.5 µm particle size enable faster run times while maintaining the same resolution.



| itons           |                                                                  |
|-----------------|------------------------------------------------------------------|
| ins:            | SunFire C <sub>18</sub> , 4.6 x 50 mm, 2.5 µm (186003417);       |
|                 | SunFire C <sub>18</sub> , 4.6 x 75 mm, 3.5 µm (186002552);       |
|                 | SunFire C <sub>18</sub> , 4.6 x 100 mm, 5 µm (186002558)         |
| e Phase A:      | Water                                                            |
| e Phase B:      | Acetonitrile                                                     |
| e Phase C:      | 100 mM CH <sub>3</sub> COONH <sub>4</sub> , pH 5.0               |
| Rate:           | 1 mL/min                                                         |
| le:             | sulfanilamide, sulfathiazole, sulfamerazine,                     |
|                 | sulfamethoxazole and sulfaquinoxaline                            |
|                 | dissolved in water at concentration of 10 µg/mL each             |
| on Volumes:     | 5, 7, 10 µL                                                      |
| nn Temperature: | Ambient                                                          |
| tion:           | UV @ 270 nm                                                      |
| ling Rate:      | 5 pt/sec                                                         |
| nent:           | Waters Alliance 2695 with 2996 PDA (no instrument modifications) |
|                 |                                                                  |

## SUNFIRE PREP C<sub>18</sub> AND C<sub>8</sub> COLUMNS



Optimum Bed Density (OBD<sup>™</sup>) preparative columns are the culmination of a two-year research and development project aimed at delivering the most reliable and consistent preparative column performance. This innovative manufacturing procedure combines the influences of hardware, particle characteristics and packed bed densities, resulting in columns with excellent stability, superior reproducibility and extremely high efficiencies.

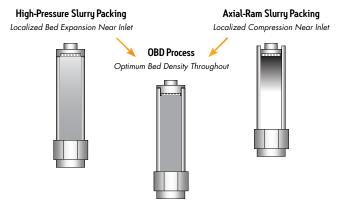
#### WATERS OBD COLUMN DESIGN

Waters has combined high-pressure slurry packing with a carefully calculated axial compression element localized at the less-dense inlet end of the bed.

With careful tuning of the packing process for each particle type and column geometry, the Prep OBD design<sup>\*</sup> and process results in predictable, uniform density profiles throughout the column. During the final capping process, Waters Column Packing Operation follows carefully established procedures designed not to over-compress or disrupt, in any non-uniform way, this portion of the bed. Waters scientists have established that too much axial compression applied at the inlet can break particles, build bridges, and lower local bed permeability.

The Prep OBD column is designed to incorporate a pair of speciallydesigned distributors and chemically inert seals made to prevent leaks at high operating pressures.

\*US Patent Number 7,399,410 and UK Patent Number GB 2408 469


#### LOADABILITY BY DESIGN

The physicochemical characteristics of sorbents used for preparative separations must be designed and/or chosen not only to achieve the selectivity necessary for optimal separations but also the load capacity that enables maximum throughput. This becomes especially tricky for ionizable compounds in mobile phases with low to moderate pH. SunFire sorbents are made from an engineered synthetic silica with proprietary surface-chemistry modifications, all done under cGMP protocols, that extend loadability far beyond that of competitive packings.

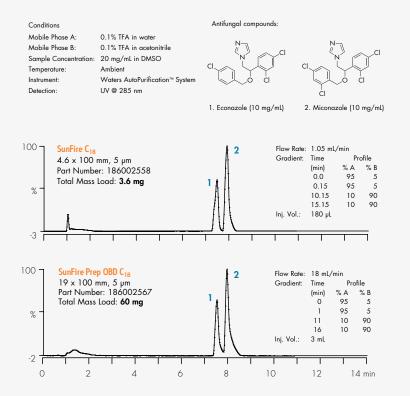
High mass-load capacity means that you may:

Save time - fewer injections required to purify the required quantity analyte

**Reduce cost** - a smaller, less expensive column may be used successfully with lower solvent consumption.



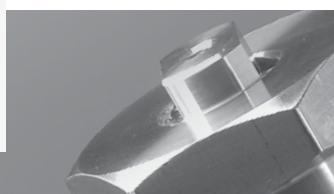
Optimized bed density in an OBD column is achieved by judicious application of a tuned amount of axial force only at the column inlet.




An exploded view of the elements of an empty OBD column.

| Conditions              |        |                   |                |                                 | Sample Concentr     | ation:    |           |          |                     |
|-------------------------|--------|-------------------|----------------|---------------------------------|---------------------|-----------|-----------|----------|---------------------|
| Mobile Phase A:         | 0.19   | % TFA in water    |                |                                 | As indicated in the | ne table, | dissolved | l in DMS | 0                   |
| Mobile Phase B:         | 0.19   | % TFA in acetor   | nitrile        |                                 | Analyte             | mg/mL     | mg/mL     | mg/mL    | mg/mL               |
| Gradient:               | 15 r   | min linear grad   | ient from 20   | 1% B to                         | Ketocongzole        | 25        | 20        | 10       | 5                   |
|                         | 85%    | 6 B, 2 min initic | al holding tin | ne                              | Econazole           | 50        | 40        | 20       | 10                  |
| Flow Rate:              | 1 ml   | L/min             |                |                                 | Miconazole          | 50        | 40        | 20       | 10                  |
| Injection Volume:       | 10 L   | υL                |                |                                 | Total Concentration | 125       | 100       | 50       | 25                  |
| ,<br>Column:            | 4.6    | x 150 mm, 5 µ     | ım             |                                 |                     |           |           |          |                     |
| Detection:              |        | @ 254 nm          |                |                                 |                     |           |           |          |                     |
| Instrument:             |        | ance HT 2795      |                |                                 |                     |           |           |          |                     |
|                         | 7 4110 |                   |                |                                 |                     |           |           |          |                     |
| SunFire C <sub>18</sub> |        |                   |                | Kromasi                         | il® C <sub>18</sub> |           |           | Comp     | ounds:<br>oconazole |
|                         |        |                   |                |                                 |                     |           |           |          | nazole              |
| Rs: 2.77                |        |                   | 250            | Rs: 1.19                        |                     |           |           |          |                     |
| W <sub>1/2</sub> : 0.17 |        | 1 1               | 250 µg         | W <sub>1/2</sub> : 0            | .55                 |           |           | 3. Mic   | onazole             |
| _ <u>_</u> \            |        | L                 |                | -r                              |                     |           | $\sim$    |          |                     |
|                         |        |                   |                |                                 |                     |           |           |          |                     |
| Rs: 2.31<br>W1/2: 0.21  |        | 1 1.              | 500 µg         | Rs: 1.0<br>W <sub>1/2</sub> : C |                     |           |           |          |                     |
| 11/2. 0.2.1             |        | a NA              |                |                                 |                     |           |           |          |                     |
| ^                       |        | f                 |                | - <u>*</u>                      |                     | L         | $\sim$    |          |                     |
| Rs: 1.92                |        |                   | 1000 µg        | Rs: 0.8                         |                     |           |           |          |                     |
| W <sub>1/2</sub> : 0.26 |        |                   |                | W <sub>1/2</sub> : C            | 0.90                |           |           |          |                     |
| h                       |        |                   |                |                                 |                     | L         | $\sim$    |          |                     |
| Rs: 1.87                |        |                   | 1250           | Rs: 0.7                         | 8                   |           |           |          |                     |
| W <sub>1/2</sub> : 0.27 |        | a An              | 1250 µg        | W <sub>1/2</sub> : 0            | 0.91                |           |           |          |                     |
|                         |        | $1 \dots 1 N$     |                |                                 |                     |           | $\sim$    |          |                     |

The high mass loading of SunFire sorbents enables the use of smaller preparative column dimensions.


# Straightforward Scale-Up of the Separation of Two Structurally Similar Compounds on SunFire ${\rm C}_{\rm 18}$ Columns

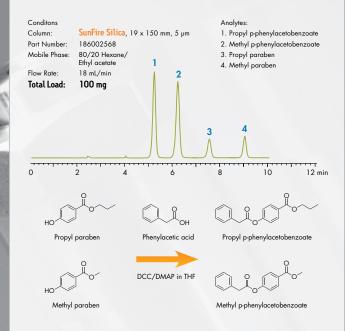


#### **EFFICIENCY AND SCALABILITY**

A major challenge for purification scientists is the isolation and purification of pairs of compounds that are structurally similar and/or that share nearly the same chromatographic retention characteristics. Often a successful analytical separation will not scale up directly due to the lower performance of, or less than optimal separation on, a preparative column.

The OBD column design in combination with efficient SunFire particles ensures equivalent chromatographic performance when scaling up from pilot analytical to preparative columns, eliminating the need for any further time-consuming method reoptimization.




#### NORMAL-PHASE SUNFIRE PREP SILICA COLUMNS

SunFire Prep silica columns allow you to use normal-phase protocols. This gives you a significant selectivity alternative to reversed-phase preparative chromatography on bonded silicas. Analytes that are highly hydrophilic or that are insoluble/unstable in water are ideal candidates for normal-phase purification. Unlike the more viscous, higher-boiling aqueous-organic mobile phases used in reversed phase, typical normal-phase eluents are lower-viscosity, lower-boiling organic solvents. As a consequence, SunFire Silica separations yield several key benefits:

- High efficiency (plate counts similar to those of analytical columns)
- Excellent scale-up capability
- Lower back pressure
- Faster analyte recovery (rapid solvent-evaporation rates)

SunFire Prep columns, available in 5  $\mu$ m and 10  $\mu$ m particle sizes, exhibit enhanced column life and stability due to the OBD design as well as excellent peak shapes and high mass-load capacity.

#### Purification of Diesters from Standard DCC/DMAP Protocol\*



\*A base-catalyzed (DMAP) esterification reaction, driven to completion using a dehydrating agent (DCC). **RCOOH + R'OH ↔ RCOOR' + H<sub>2</sub>O** 

DMAP = 4-Dimethylaminopyridine; DCC = 1,3-Dicyclohexylcarbodiimide; THF = Tetrahydrofuran

#### **Physical Characteristics**

| Chemistry       | Particle Size      | Particle Shape | Pore Size | Carbon Load | End-capped |
|-----------------|--------------------|----------------|-----------|-------------|------------|
| C <sub>18</sub> | 2.5, 3.5, 5, 10 μm | Spherical      | 100Å      | 16%         | Yes        |
| C <sub>8</sub>  | 2.5, 3.5, 5, 10 μm | Spherical      | 100Å      | 11.5%       | Yes        |
| Silica          | 5, 10 μm           | Spherical      | 100Å      | N/A         | N/A        |

#### SunFire 2.5 µm Analytical Columns

| Particle Size | Dimensions            | C <sub>18</sub> | C <sub>8</sub> |
|---------------|-----------------------|-----------------|----------------|
| 2.5 µm        | 1.0 x 50 mm           | 186003392       | 186003394      |
| 2.5 µm        | 2.1 x 20 mm <i>IS</i> | 186003397       | 186003398      |
| 2.5 µm        | 2.1 x 30 mm           | 186003399       | 186003400      |
| 2.5 µm        | 2.1 x 50 mm           | 186003401       | 186003402      |
| 2.5 µm        | 3.0 x 20 mm <i>IS</i> | 186003403       | 186003404      |
| 2.5 µm        | 3.0 x 30 mm           | 186003407       | 186003408      |
| 2.5 µm        | 3.0 x 50 mm           | 186003409       | 186003410      |
| 2.5 µm        | 4.6 x 20 mm <i>IS</i> | 186003411       | 186003412      |
| 2.5 µm        | 4.6 x 30 mm           | 186003415       | 186003416      |
| 2.5 µm        | 4.6 x 50 mm           | 186003417       | 186003418      |
| 2.5 µm        | 4.6 x 75 mm           | 186003419       | 186003420      |

#### SunFire 3.5 µm Analytical Columns

| Particle Size | Dimensions            | C <sub>18</sub> | C <sub>8</sub> |
|---------------|-----------------------|-----------------|----------------|
| 3.5 µm        | 1.0 x 50 mm           | 186002526       | 186002705      |
| 3.5 µm        | 1.0 x 150 mm          | 186002528       | 186002706      |
| 3.5 µm        | 2.1 x 20 mm <i>IS</i> | 186002531       | 186002697      |
| 3.5 µm        | 2.1 x 30 mm           | 186002532       | 186002709      |
| 3.5 µm        | 2.1 x 50 mm           | 186002533       | 186002710      |
| 3.5 μm        | 2.1 x 100 mm          | 186002534       | 186002711      |
| 3.5 μm        | 2.1 x 150 mm          | 186002535       | 186002712      |
| 3.5 µm        | 3.0 x 20 mm <i>IS</i> | 186002686       | 186002701      |
| 3.5 µm        | 3.0 x 30 mm           | 186003254       | Custom         |
| 3.5 µm        | 3.0 x 50 mm           | 186002542       | 186002719      |
| 3.5 µm        | 3.0 x 100 mm          | 186002543       | 186002720      |
| 3.5 μm        | 3.0 x 150 mm          | 186002544       | 186002721      |
| 3.5 µm        | 4.6 x 20 mm <i>IS</i> | 186002549       | 186002699      |
| 3.5 μm        | 4.6 x 30 mm           | 186002550       | 186002728      |
| 3.5 µm        | 4.6 x 50 mm           | 186002551       | 186002729      |
| 3.5 µm        | 4.6 x 75 mm           | 186002552       | 186002730      |
| 3.5 µm        | 4.6 x 100 mm          | 186002553       | 186002731      |
| 3.5 µm        | 4.6 x 150 mm          | 186002554       | 186002732      |

#### SunFire 5 µm Analytical Columns

| Particle Size | Dimensions            | C <sub>18</sub> | C <sub>8</sub> |
|---------------|-----------------------|-----------------|----------------|
| 5 µm          | 1.0 x 150 mm          | 186002529       | 186002707      |
| 5 µm          | 2.1 x 20 mm <i>IS</i> | 186002537       | 186002698      |
| 5 µm          | 2.1 x 30 mm           | 186002538       | 186002714      |
| 5 µm          | 2.1 x 50 mm           | 186002539       | 186002715      |
| 5 µm          | 2.1 x 100 mm          | 186002540       | 186002716      |
| 5 µm          | 2.1 x 150 mm          | 186002541       | 186002717      |
| 5 µm          | 3.0 x 20 mm <i>IS</i> | 186002685       | 186002702      |
| 5 µm          | 3.0 x 50 mm           | 186002545       | 186002723      |
| 5 µm          | 3.0 x 100 mm          | 186002546       | 186002724      |
| 5 µm          | 3.0 x 150 mm          | 186002547       | 186002725      |
| 5 µm          | 3.0 x 250 mm          | 186002548       | 186002726      |
| 5 µm          | 4.6 x 20 mm <i>IS</i> | 186002555       | 186002700      |
| 5 µm          | 4.6 x 30 mm           | 186002556       | 186002734      |
| 5 µm          | 4.6 x 50 mm           | 186002557       | 186002735      |
| 5 µm          | 4.6 x 100 mm          | 186002558       | 186002736      |
| 5 µm          | 4.6 x 150 mm          | 186002559       | 186002737      |
| 5 μm          | 4.6 x 250 mm          | 186002560       | 186002738      |

#### SunFire Method Validation Kits

| Particle Size | Dimensions           | C <sub>18</sub> | C <sub>8</sub> |
|---------------|----------------------|-----------------|----------------|
| 3.5 µm        | 2.1 x 100 mm MV Kits | 186002674       | 186002739      |
| 3.5 µm        | 4.6 x 100 mm MV Kits | 186002675       | 186002740      |
| 3.5 µm        | 4.6 x 150 mm MV Kits | 186002676       | 186002741      |
| 5 µm          | 4.6 x 100 mm MV Kits | 186002677       | 186002742      |
| 5 µm          | 2.1 x 150 mm MV Kits | 186002678       | 186002743      |
| 5 µm          | 4.6 x 150 mm MV Kits | 186002679       | 186002744      |
| 5 µm          | 4.6 x 250 mm MV Kits | 186002680       | 186002745      |

#### SunFire Analytical Guard Columns

| Particle Size | Dimensions                                           | C <sub>18</sub>        | C <sub>8</sub>         |
|---------------|------------------------------------------------------|------------------------|------------------------|
| 2.5 µm        | 2.1 x 10 mm Sentry <sup>™</sup> Guard Columns (2/pk) | 186003395 <sup>3</sup> | 186003396 <sup>3</sup> |
| 2.5 µm        | 3.0 x 20 mm Sentry Guard Columns (2/pk)              | 1860034054             | 1860034064             |
| 2.5 µm        | 4.6 x 20 mm Sentry Guard Columns (2/pk)              | 1860034134             | 1860034144             |
| 3.5 µm        | 2.1 x 10 mm Sentry Guard Columns (2/pk)              | 186002530 <sup>3</sup> | 186002708 <sup>3</sup> |
| 3.5 µm        | 3.0 x 20 mm Sentry Guard Columns (2/pk)              | 1860026814             | 1860027184             |
| 3.5 µm        | 4.6 x 20 mm Sentry Guard Columns (2/pk)              | 1860026824             | 1860027274             |
| 5 µm          | 2.1 x 10 mm Sentry Guard Columns (2/pk)              | 186002536 <sup>3</sup> | 186002713 <sup>3</sup> |
| 5 µm          | 4.6 x 20 mm Sentry Guard Columns (2/pk)              | 1860026844             | 1860027334             |
| 5 µm          | 3.0 x 20 mm Sentry Guard Columns (2/pk)              | 1860026834             | 1860027224             |

#### SunFire 5 µm Prep Columns

| Particle Size | Dimensions      | C <sub>18</sub> | C <sub>8</sub> | Silica    |
|---------------|-----------------|-----------------|----------------|-----------|
| 5 µm          | 10 x 50 mm      | 186002561       | 186002746      | 186003425 |
| 5 µm          | 10 x 100 mm     | 186002562       | 186002747      | 186003426 |
| 5 µm          | 10 x 150 mm     | 186002563       | 186002748      | 186003427 |
| 5 µm          | 10 x 250 mm     | 186002564       | 186002749      | 186003428 |
| 5 µm          | OBD 19 x 30 mm  | 186002879       | 186002881      | 186003430 |
| 5 µm          | OBD 19 x 50 mm  | 186002566       | 186002751      | 186003431 |
| 5 µm          | OBD 19 x 100 mm | 186002567       | 186002752      | 186003432 |
| 5 µm          | OBD 19 x 150 mm | 186002568       | 186002753      | 186003433 |
| 5 µm          | OBD 30 x 50 mm  | 186002570       | 186002755      | 186003435 |
| 5 µm          | OBD 30 x 75 mm  | 186002571       | 186002756      | 186003436 |
| 5 µm          | OBD 30 x 100 mm | 186002572       | 186002757      | 186003437 |
| 5 µm          | OBD 30 x 150 mm | 186002797       | 186002795      | 186003438 |
| 5 µm          | OBD 30 x 250 mm | 186003969       | -              | -         |
| 5 µm          | OBD 50 x 50 mm  | 186002867       | 186002868      | 186003439 |
| 5 µm          | OBD 50 x 100 mm | 186002869       | 186002870      | 186003440 |
| 5 µm          | OBD 50 x 150 mm | 186003941       | -              | -         |
| 5 µm          | OBD 50 x 250 mm | 186003970       | -              | -         |

#### SunFire 10 µm Prep Columns

| Particle Size | Dimensions       | C <sub>18</sub> | C <sub>8</sub> | Silica    |
|---------------|------------------|-----------------|----------------|-----------|
| 10 µm         | 10 x 50 mm       | 186003840       | 186003841      | Custom    |
| 10 µm         | 10 x 150 mm      | 186002664       | 186002759      | 186003442 |
| 10 µm         | 10 x 250 mm      | 186002665       | 186002760      | 186003443 |
| 10 µm         | OBD 19 x 50 mm   | 186002667       | 186002762      | 186003445 |
| 10 µm         | OBD 19 x 150 mm  | 186002668       | 186002763      | 186003446 |
| 10 µm         | OBD 19 x 250 mm  | 186002669       | 186002764      | 186003447 |
| 10 µm         | OBD 30 x 50 mm   | 186003854       | 186003853      | 186003855 |
| 10 µm         | OBD 30 x 100 mm  | 186003971       | -              | -         |
| 10 µm         | OBD 30 x 150 mm  | 186002670       | 186002765      | 186003448 |
| 10 µm         | OBD 30 x 250 mm  | 186002671       | 186002766      | 186003449 |
| 10 µm         | OBD 50 x 50 mm   | 186002871       | 186002872      | 186003450 |
| 10 µm         | OBD 50 x 100 mm  | 186003972       | -              | -         |
| 10 µm         | OBD 50 x 150 mm  | 186002672       | 186002767      | 186003451 |
| 10 µm         | OBD 50 x 250 mm  | 186002673       | 186002768      | 186003452 |
| 10 µm         | OBD 100 x 250 mm | 186003928       | -              | -         |

#### SunFire Prep Guard Columns

| Particle Size | Dimensions | C <sub>18</sub>        | C <sub>8</sub>         | Silica                 |
|---------------|------------|------------------------|------------------------|------------------------|
| 5 µm          | 10 x 10 mm | 186002565 <sup>1</sup> | 186002750 <sup>1</sup> | 1860034291             |
| 5 µm          | 19 x 10 mm | 186002569 <sup>2</sup> | 186002754 <sup>2</sup> | 186003434 <sup>2</sup> |
| 10 µm         | 10 x 10 mm | 186002663 <sup>1</sup> | 186002758 <sup>1</sup> | 1860034411             |
| 10 µm         | 19 x 10 mm | 186002666 <sup>2</sup> | 186002761 <sup>2</sup> | 186003444 <sup>2</sup> |

#### SunFire Prep Scouting Columns

| Particle Size | Dimensions   | C <sub>18</sub> | C <sub>8</sub> | Silica    |
|---------------|--------------|-----------------|----------------|-----------|
| 5 µm          | 4.6 x 150 mm | -               | -              | 186003453 |
| 5 µm          | 4.6 x 250 mm | -               | -              | 186003454 |
| 10 µm         | 4.6 x 150 mm | 186003390       | Custom         | 186003467 |
| 10 µm         | 4.6 x 250 mm | 186003391       | Custom         | 186003468 |

### www.waters.com/sunfire



Requires 10 x 10 mm Prep Guard Cartridge Holder 289000779
Requires 19 x 10 mm Prep Guard Cartridge Holder 186000709
Requires Universal Sentry Guard Column Holder - 2.1 x 10 mm WAT097958
Requires Universal Sentry Guard Column Holder - 3.0 x 20 mm WAT046910

## Sales Offices



The quality management system of Waters' manufacturing facilities in Taunton, Massachusetts and Wexford, Ireland complies with the Internati Standard ISO 9001:2000 Quality Management and Quality Assurance Standards. Waters' quality management system is periodically audited by t



© 2008 Waters Corporation. Waters, The Science of What's Possible, SunFire, IS, OBD, Sentry, AutoPurification and Alliance are trademarks of Waters Corporation. All other trademarks are the property of their respective owners.

720000875EN October 2008 SC-FF